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A review of the experimental studies relating boron to biological effects on appendicular and axial bones in animal models suggests that numerous
influences, known and unknown, affect the responsiveness of bone to dietary boron. Degrees of skeletal response to boron are modified by other
nutritional variables that include calcium, magnesium, vitamin D, and fluoride. Evidence suggests that appendicular and axial bones may differ in
their responses. Tests of the mechanical properties of bones may provide useful criteria for assessing the impacts of boron status on bone. These
tests might resolve questions about optimal intakes of boron because mechanical properties sometimes respond to boron when composition of
bones does not. Difficulty in interpreting some of the existing research arises because of the incipient state of knowledge regarding boron nutriture,
to analytical problems associated with determining accurately the small quantities of boron in feed and tissues, and to technological difficulties in
controlling extraneous exposure of experimental animals to boron. Yet there is considerable evidence that both compositional and functional proper-
ties of bone are affected by boron status. - Environ Health Perspect 102(Suppl 7):49-53 (1994)
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Introduction
Bone loss with aging in humans can

begin by the third decade for the axial
skeleton and the fifth decade for the
appendicular skeleton (1). Forming
greater bone mass during growth pro-

tects against the effects of bone loss (2),
and high calcium intake during young

adulthood may improve axial and appen-

dicular bone mass in women (3).
Calcium, phosphorus, and vitamin D are

established nutritional determinants of
bone mineralization; but other nutrients,
including boron, may modify use of
these nutrients. Nielsen and co-workers
(4) reported that a 3 mg/day supple-
ment of dietary boron reduced urinary
losses of Ca and magnesium (Mg) by
postmenopausal women and increased
serum estradiol-17P and testosterone,
especially when dietary intake of Mg was

low. Later studies from this laboratory
showed that indicators of Ca status,
including plasma ionized Ca, serum 25-
hydroxycholecalciferol, calcitonin and
osteocalcin, were affected by the boron
intakes of postmenopausal women and
men of comparable age (5).
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Noninvasive methods to estimate bone
mass in humans can assess mineral con-
tent of bone, but they cannot assess its
total composition, physical structure,
and functional properties (6) and may
lack sensitivity to stages of change in
aging bone that occur slowly, but cumu-
latively, over time. Rats are suitable
models for studies of bone growth and
modeling (7,8). These and other animal
models can provide useful information
about how dietary and physiologic con-
ditions affect the total composition,
physical structure, and functional quali-
ties of bones. Times for peak growth and
mineralization differ between trabecular
and cortical bone (9). Thus, in addition
to differences in the proportions of cor-
tical and trabecular bone (10) and rates
of resorption (11), vertebrae have a
longer potential growth period than long
bones in rats and humans because clo-
sure of the growth plate occurs later in
the axial skeleton than in the appendicu-
lar skeleton (12,13). Therefore, bones in
the axial and appendicular skeletal areas
may respond differently to the same
nutritional factors.

Because of boron's demonstrated rela-
tionship to aspects of metabolism that
are known to affect the formation of
bone mass in humans, we will review the
relationship of boron to the composition
and functioning of the two main types
of bone in animal models under con-
trolled conditions.

Effects of Boron on
Appendicular and Axial Bone
Appendicular Bone
Size and Composition. That bone responds
to boron is evident from both toxicologic
and nutritional studies. Seal and Weeth
(14) reported 15.6% lower Ca and 10%
less phosphorus (P<0.10) in dry, fat-free
femurs of rats receiving 300 mg boron/!
drinking water, and 53% less fat in femurs
of those receiving 150 or 300 mg boron/!
water. Both groups were compared to con-

trols receiving no supplemental boron; the
chow fed to all groups contained an addi-
tional 54 mg boron/kg diet. The highest
intake of boron reduced plasma alkaline
phosphatase activity by 31.0%, so

osteoblasts may have been inhibited.
Calcium:phosphorus ratios and percent ash
were not affected by boron intake.

Administration of boron reportedly cor-

rected negative Ca and phosphorus bal-
ances and the hypocalcemia and secondary
hyperparathyroidism associated with fluo-
rosis in rabbits, although skeletal Ca was

not significantly affected (15-18). Boron
administration reduced or prevented the
fluoride-induced cortical thickening in tib-
ias (16). Uncharacterized boron-fluoride
complexes and parathyroid hormone were

postulated as mediators of these effects.
Daily doses of 4 or 8 mg boron/kg body

weight given to castrated male pigs for 13
months decreased bone mineral content

and the cortical area relative to bone sur-

face area in femurs and metacarpal bones II
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Table 1. Effects of 3, 6, or 12 mg boron supplementation/kg calcium-deficient (CD) diet, experiment 1.

p
Control CTL vs Among CD vs

Variable (CTL) CD CD+3B CD+6B CD + 12B CD B levels CD+B

Femur
Drywt, mg 414 277 257 248 264 0.001 ns 0.054
Calcium content, 92.7 43.6 39.6 39.8 40.0 0.001 ns 0.037
mg/bone

Magnesium content, 1.79 1.15 0.83 0.85 0.88 0.001 ns 0.001
mg /bone

Length, mm 32.14 30.57 31.49 31.55 31.78 0.001 ns 0.001
Inside diameter, mm 2.20 2.24 2.30 2.32 2.37 ns ns 0.039
Wall thickness, mm 0.67 0.63 0.52 0.54 0.53 0.042 ns 0.001
Inside / 0.62 0.64 0.69 0.68 0.69 0.090 ns 0.001
outside diameter

Yield load, kg 6.10 2.11 1.78 1.99 1.46 0.001 ns 0.077
Yield/ultimate stress 0.566 0.537 0.516 0.503 0.423 ns 0.048 0.049
Strain 0.0288 0.0310 0.0317 0.0286 0.0245 ns 0.076 0.068

Vertebra
Magnesium content, 0.351 0.180 0.156 0.159 0.163 0.001 ns 0.014
mg / bone

Peak load, kg 16.6 5.6 8.3 7.9 7.6 0.001 ns 0.017

Table 2. Consistent effects a of calcium-deficient (CD) or CD + 12B diets (12 mg boron supplement) in 3 experi-
ments, compared with controls (CTL).

Variable CTL CD CD + 12B

Femur
Dry wt, mg 0.418 0.277 0.272
Calcium content, mg/bone 91 46 44
Outside diameter, mm 3.43 3.26 3.25
Inside diameter, mm 2.15 X 2.27 xV 2.36
Ultimate stress, MPa 132 69 71
Yield/ultimate stress 0.576 x 0.523 x 0.469 1

Breaking extension 15.6 22.0 21.4
Elasticity, MPa 3128 1483 1487

Vertebra
Dry wt, mg 95 53 53
Calcium content, mg/bone 19.8 8.5 9.0
Magnesium content, mg/ bone 0.37 0.18 0.18
Peak load, kg 21.7 8.2 9.6

aExcept as noted, CD and CD + 1 2B differed from CTL but not from each other. Where superscripts are shown, val-
ues not sharing a common superscript differ.

and III, and diminished bone and osteoid
mass (corresponding to osteoporosis) in the
iliac crest (19). (We estimate these dosages
to have been equivalent, initially, to about
80 and 160 mg boron/kg diet.) The higher
dose of boron also markedly reduced the
volume of spongy bone in the iliac crest,

with some reduction in the volume of
osteoid. Boron did not significantly reduce
the ash content of the iliac crest, although
both levels of boron reduced rib ash. There
was no evidence that boron was stored in
any of the bones, possibly because of
reduced femoral and metacarpal mineral
content. Compared to controls, both
boron levels significantly decreased

parathyroid activity. The authors conclud-
ed (19) that boron led to osteoporosis
because of direct action of boron on bone,
as loss of bone mass was associated with
reduced parathyroid activity in their pigs.
In contrast to the pigs, adult male rats

(weight 200-220 g) fed 1575 mg

boron/kg diet for up to 7 days accumulated
boron progressively in the tibias and fibulas
for the duration of the experiment (20).
Bone from a human accident victim con-

tained a higher concentration of boron
than other tissues (21); boron concentra-

tions in parietal, rib, and femoral bone
were similar in a series of 33 cadavers rang-

ing in age from 5 months to 75 years (22).

Boron content of bone did not change with
age in that human study (22) nor in
boron-unsupplemented, chow-fed mice
studied at 30 to 1000 days of age (23).
We examined bone size and composition

in mineral-depleted, female Sprague-
Dawley rats that had been given added
dietary boron for 6 weeks (24,25).
Purified diets were patterned after energy

sources in the American diet; control
rations were planned to be adequate in all
nutrients (26). Experimental diets provid-
ed 100% or 30% recommended Ca and
100% or 20% recommended Mg (26).
Boron supplements were added at 3 to 12
mg/kg diet, and all diets were intended to

provide a safe and adequate range of boron
for well-nourished rats. Diets and glass-
distilled water were provided ad libitum.

At the end of the experiments, both
femurs and two vertebras were removed
and cleaned (27,28). After testing
(described subsequently), bones were dried,
ashed, and analyzed for Ca and Mg. In
experiment 1, feeding a Ca-deficient diet
(CD) reduced the weight, Ca and Mg con-

tents, length, and cortical thickness of
femurs (Table 1). Thinning of femoral wall
was related to an increased ratio of
inside:outside diameter. Animals fed an

additional 3, 6, or 12 mg boron/kg CD
diet generally responded similarly but often
differed from CD rats. Adding boron to

the CD diet reduced even more substan-
tially the dry bone weight and Ca and Mg
contents, while it increased bone length.
Boron also increased the inside diameters
of femurs without changing outer diame-
ters, further thinning the shaft walls
beyond that produced by CD alone. This
change paralleled a decrease in femur mass.

Two additional experiments contained
groups fed diets of the same formulations
as the control (CTL), CD, and CD with
12 mg boron/kg (CD + 12B) diets in
experiment 1. CD affected weight, Ca con-

tent, and outside diameter of femurs when
all three experiments were evaluated (Table
2), but effects of boron on CD rats were

less apparent in experiments 2 and 3 than
in experiment 1 (Table 1). Inside diameters
of femurs were not significantly increased
by CD alone, but adding boron led to a

clear increase compared with controls
(Table 2).
One notable difference among these

experiments was the markedly reduced
serum Ca concentration in CD rats in
experiment 1; the control concentration
was 9.5 mg Ca/dl compared to 4.8 g/dl in
CD. This hypocalcemia was completely
normalized by addition of 3 to 12 mg
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boron/kg diet. In experiments 2 and 3,
slight reductions in serum Ca (-0.2 and
-0.3 mg/dl) were not significant, and
boron did not affect serum Ca. Thus boron
effects on bone were greatest in the experi-
ment in which CD animals exhibited low
serum Ca concentrations. Others (29-31)
have reported hypocalcemia and boron
responsiveness in vitamin D-deficient
chicks and rats. Vitamin D deficiency
seems an unlikely explanation for boron
effects in experiment 1 because the same
lot of vitamin mix was used in experiments
1 and 2. Wherever possible, in fact, diet
ingredients from the same lots were uti-
lized. It was necessary to use a new lot of
CD mineral mix in experiments 2 and 3;
however, analyses revealed similar Ca, Mg,
and boron contents in both lots. Boron in
CD diets in experiments 2 and 3 was
approximately 0.8 mg/kg, perhaps slightly
less than the 1.0 mg/kg determined for
experiment 1. (All boron analyses were
courtesy of C.D. Hunt, Grand Forks
Human Nutrition Research Center, Grand
Forks, ND) All animals were of the same
strain and similar initial ages (22-24 days),
but those from experiment 3 were obtained
from another supplier. Rats that were not
expressly supplemented with boron in our
experiments might have been ingesting
marginal amounts of boron. Extraneous
nondietary sources of boron, such as from
drinking water from a glass still, may have
sufficiently increased boron intake to meet
boron requirements, with the extraneous
extra boron reducing the likelihood that
modest supplements would have significant
effects. Genetic or early dietary differences
between animals at different times or from
different colonies (experiments 1 and 2 ver-
sus 3) could have led to different reserves of
boron initially and also influenced adequa-
cy of diets during the experiment to main-
tain sufficient body boron content. Dietary
boron and other minerals may greatly alter
tissue-boron content (32 ), especially in
bone (20). Low initial boron reserves in
experiment 1 could have enhanced effects
of the supplements given. Intakes of 12 mg
boron/kg were not expected to be toxic,
but pigs given an estimated 80 to 160 mg
boron/kg diet initially (19) exhibited thin-
ning of walls and reduced mass of femurs
described as osteoporotic changes.
Qualitatively, some of these changes resem-
bled the boron effects we observed with 12
mg/kg purified rations. It is not possible to
conclude with any certainty that the range
of intakes with 0 to 12 mg / kg supple-
ments was, in fact, either always adequate
or never toxic. The various intrinsic and

Table 3. Effects on femur of adding boron to a diet low in magnesium (MD) or in both magnesium and calcium
(CMD), experiment 2.

p
CTL CTL B x Ca

Variable CTL MD MD + 12B CMD CMD + 12B vs MD vs CMD interactions a

Ca content, mg/g bone 127 124 125 69 78 ns .001 0.061 [ns,0.01]
Outside diameter, mm 3.60 3.47 3.61 3.55 3.45 ns ns 0.024 [0.13,0.091
Inside diameter, mm 2.27 2.02 2.14 2.51 2.34 0.004 0.004 0.020 [0.08,0.12]
Peak load, kg 9.58 9.50 9.20 3.12 3.85 ns 0.001 0.056 [ns,.07]
Yield stFess, MPa 54.9 74.0 61.3 19.5 20.3 0.003 0.001 0.064 [.08,ns]
Ultimate stress, MPa 114.9 124.9 110.7 46.5 57.3 ns 0.001 0.018 [.12,.07]

aP for boron effects with MD and CMD, respectively, are given in brackets; ns = >.1 5.

extrinsic factors that influenced nutritional
and environmental conditions in these
experiments were too difficult to control.
Such uncertainty, familiar to others who
have studied nutritional properties of
boron, is due in large part to the limited
existence of resources to control extraneous
sources of boron and to the incipient state
of knowledge in this relatively new area of
nutritional study.

In experiment 2, additional groups were
fed diets deficient in Mg (MD) or in both
Ca and Mg (CMD) with or without 12 mg
boron/kg diet (25). Among these groups,
boron had no effect on the amount of
femur Ca in MD animals, but it increased
the bone Ca in CMD rats (Table 3). MD
decreased the inside femur diameters, while
CMD (like CD in experiment 1 above)
increased them; because neither deficiency
significantly affected outside diameters,
femur shafts in MD rats were thick and
those in CMD animals were thin. In a sig-
nificant Ca by boron interaction, boron
tended to increase both inner and outer
femur diameters in MD rats and to
decrease them in CMD animals. Actions of
boron frequently have been associated with
Mg metabolism (32,33). In rat femur, Ca
and Mg concentrations were decreased by
boron when dietary Mg was limited, but
Ca tended to increase when Mg intake was
adequate (33).
Serum Ca concentrations were altered

by CD in only one of our experiments,
whereas serum Mg was elevated by
adding boron in all experiments. Serum
Mg was unaffected by CD but was signif-
icantly elevated by boron in experiment 1
(p <0.01). The effect was less pronounced
in other experiments, but, overall, the
serum Mg for CD + 12B exceeded the
concentration in controls (P= 0.03), and
boron also increased the serum Mg in
Mg-depleted animals (p = 0.03), particu-
larly the CMD group (p = 0.02).

Mechanical Properties. Although
mechanical properties have often been used
to assess functional characteristics of bone
in relation to other nutritional factors
(34,35), we are the first investigators
(24,25) to examine effects of boron on
mechanical properties of bone. Peak load
required to break the femur was measured
in a 3-point flexure test using an Instron
testing machine as described elsewhere
(24,25,27,28). Various bone characteristics
were measured from the load-deformation
curves plotted during the flexure test. The
yield load, corresponding to the force at
the elastic limit of femurs in our experi-
ment 1 was reduced by CD, and tended to
be further reduced by boron (p<0.08;
Table 1). With the larger boron supple-
ments, a decline in strain, or limit of elastic
bending, was also suggested. The ultimate
stress, or force-per-unit bone cross section,
was not significantly affected by boron, but
the ratio of stresses at yield and breaking
points decreased progressively with increas-
ing boron additions. Because there was no
corresponding difference in femoral weight
or Ca among the three levels of boron sup-
plementation, this difference among boron
levels may reflect a qualitative alteration of
bone mineral or a change in matrix proper-
ties. A similar progressive decline in strain,
or limit of elastic bending, was also sug-
gested. When control, CD and CD + 12B
groups in all three experiments were exam-
ined together, the yield:ultimate stress ratio
was significantly less in CD + 12B than in
controls, with the CD value intermediate
(Table 2). Investigation to determine the
significance of, and basis for, a difference in
that ratio of stresses may help elucidate a
physiological role for boron. Because the
only measurements that differed among the
three levels of boron in experiment 1 were
mechanical properties, they may be espe-
cially useful parameters in resolving ques-
tions of optimal intakes.
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Femoral ultimate stress was reduced by
CMD (Table 3) but not by MD or CD
alone. In these Mg-depleted rats, the effect
of boron depended on Ca intake. Boron
tended to decrease stress tolerated by bones
of MD group, but to increase that of the
CMD group.

Axial Bone
Administration of 4 and 8 mg boron/kg
body weight for 13 months to castrated
male pigs reduced the ash in ribs as com-
pared to controls (19). Vertebrae (as well as
femurs) from female rats fed an adequate
ration and from ovariectomized rats fed a
low-Mg diet were compared with those
from similar groups supplemented with 40
mg boron/kg diet for 12 weeks (36). Ca
concentration in dry femur was significantly
reduced by boron in ovariectomized, Mg-
depleted rats; a similar trend with vertebral
Ca concentration was not significant. boron
had no significant effects in intact animals
fed an adequate diet.

In our shorter experiments with rats
given lower amounts of boron (24,25), the
dry weights and Ca and Mg contents of two
vertebrae examined (13th thoracic and first
lumbar) were reduced by CD (Table 2). In
experiment 1 only, addition of boron led to
further reduction in Mg content. Vertebral
weights and ash contents were not signifi-
cantly affected by boron, compared with
unsupplemented Ca-depleted animals, even
though dry weights of femurs were reduced
by boron in the same experiment. Vertebrae
were compressed by using the same testing
machine as for femurs, with flat anvil and
striker to ascertain the load required.

In experiment 1, boron significantly
increased the maximal compressive load
withstood by vertebrae, compared with CD
rats (Table 1); groups fed 3 to 12 mg
boron/kg diet did not differ from one
another. Like differences in composition
already noted, this increased strength of ver-
tebrae is in contrast to the reduced femur
loads for the same boron-supplemented ani-
mals. The slightly greater mean peak load
for CD + 12B groups from all three experi-
ments, however, was not significant (Table
2). No effects of boron on physical proper-
ties of vertebras from MD- or CMD-fed
animals were observed. Such findings as
these suggest a possible redistribution of Ca
in the skeleton with addition of boron to
the diet.

Significance and Limitations
of Nutritional Studies to Date
Boron has tended to normalize some
abnormal values in Ca- and /or Mg-defi-

cient or fluoride-supplemented animals.
For example, femur length, yield extension
and strain, vertebral peak load values, and
serum Ca were returned to or toward nor-
mal with boron feeding in our experiment
1. Measures that were made more abnor-
mal by boron than by another underlying
mineral deficit included: femur inside
diameter and yield: ultimate stress in all
experiments; and in our experiment 1 CD
rats, femur dry weight, Ca and Mg, wall
thickness, and vertebral Mg content. Some
of these effects may be desirable but others
may not. The increased inside diameter of
femurs was consistent with the osteoporot-
ic changes in appendicular bones from pigs
(19) in response to supplemental amounts
of boron higher than we used.
One difficulty in nutritional studies of

boron is lack of certainty as to the boron
status, requirements, and tolerance of
experimental subjects. A boron deficiency
syndrome is not recognized. It is difficult
to ascertain whether analysis of tissues for
low concentrations of boron accurately
measures their boron content because of
the complexity of the analysis and the high
risk of contamination during handling of
the specimens for analysis. Because of lim-
ited information about dietary and envi-
ronmental sources (and variability in boron
content), it is understandable that initial
boron reserves and extraneous sources dur-
ing experiments may lead to a variety of
outcomes. The lower the levels of boron
studied, the greater the impact of such
background variation. Yet, the interest in
boron as a nutrient or, at least, as a factor
proven at low levels to influence the need
for and metabolism of various nutrients,
makes it particularly important to test
within a range of low intakes. Lack of pre-
cise knowledge as to the actual boron
requirement means there is risk at low lev-
els that conditional boron deficiency may
be induced by diets that, under other con-
ditions, would contain adequate boron. A
further limitation is the early stage of devel-
opment that characterizes research in the
area of bone cell regulation (37).

Research reviewed here suggests that
many factors, identifiable and unknown,
may affect sensitivity and responsiveness of
bone to dietary boron. A similar conclusion
has been drawn previously concerning
boron metabolism in general (33).
Nutritional state with regard to minerals
(calcium, magnesium, fluoride, aluminum,
manganese, potassium, copper) or other
nutrients (methionine, vitamin D)
(4,15-19,29,32,33,36,38-42) modifies
the type or degree of response to boron.

Most of these nutrients have clear roles in
skeletal metabolism. Both qualitative and
quantitative differences in the response to
boron in various experiments suggest that
there are other factors not yet identified
that may determine boron's effects.
We originally hypothesized that sensitiv-

ity of different types of bone to boron
might vary, and available evidence from
several laboratories supports this concept.
Even in the same animals (24,36), femurs
and vertebrae sometimes were affected dif-
ferently by boron, both in composition and
in mechanical properties. Such responses
may have occurred because of the different
composition of bone in various sites and
the different growth patterns of these types
of bone. The results indicate the need for
further examination of components of
bones to ascertain why they respond differ-
ently to boron.

Despite difficulty in interpreting some of
the existing research because of the nascent
state of knowledge and analytical difficul-
ties, there is considerable evidence that
skeletal changes can result from varying
boron intake and that these skeletal effects
involve both compositional and functional
properties. This evidence, together with the
tremendous societal cost of dealing with
health problems related to skeletal deterio-
ration in humans, should justify further
investigation of the role of boron in rela-
tion to bone.
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